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Abstract

The strength and the dilatancy of soils are largely in¯uenced by the choice of the stress and
strain increment variables. Cam-clay like models that use extended Mises strength criterion
cannot consider the e�ect of intermediate principal stress properly and give unrealistic

strength under generalized three-dimensional stresses except triaxial compression condition.
Nakai and Mihara proposed a modi®ed stress tensor (tij) based on the Spatially Mobilized
Plane (SMP) concept that uses Matsuoka±Nakai strength criterion to consider the in¯uence

of intermediate principal stress on the strength and the dilatancy of soils. Matsuoka±Nakai
strength criterion is a convex surface on the �-plane in the ordinary stress space and satis®es
Mohr±Coulomb criterion under axisymmetric conditions (triaxial compression and exten-

sion). Using the tij-concept, isotropic and kinematic hardening clay and sand models have
been proposed and experimentally veri®ed. Recent investigations have revealed inconsistency
of the tij-concept with the critical state concept used in the original and modi®ed Cam-clay

models. In this paper the inconsistency of the tij-concept with the critical state concept is
pointed out ®rst, then a modeling approach has been introduced, which virtually can adopt
any strength criterion in a consistent way to incorporate the critical state concept. It is shown
that the proposed stress and strain increment quantities are properly work conjugate. A

compact stress±dilatancy relation is also introduced using the proposed stress and strain
increment quantities, which gives a continuous and smooth plastic potential and has control
over the sti�ness of the model predictions. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Numerous constitutive models for soils have been proposed to simulate various
aspects of soil behavior but many of them use extended Mises type failure criteria as
in Eq. (1) like the Cam clay [1,2]. Throughout this paper `Cam-clay models' refers
to the models proposed by Roscoe et al. (1963) and Roscoe and Burland (1968).

� � q=p � constant; �1�

where p and q are the e�ective mean and the deviator stresses given by the following
two equations.

p � �ij�ij=3; �2�

q � ������������������������������������������������
3=2��ij ÿ p�ij���ij ÿ p�ij�

p
: �3�

It is to be noted that all stresses mentioned in this paper are e�ective stresses.
The experimental evidence shows that the strength of soil under triaxial extension

and true triaxial conditions are much less than those predicted by the extended
Mises criterion. Lade±Duncan [3] and Matsuoka±Nakai [4] proposed the failure
criteria as in Eqs. (4) and (5) respectively to predict the strength of soils under three-
dimensional stress conditions.

J31=J3 � constant; �4�

Xf �
������������������������������
J1J2=�9J3� ÿ 1

p
� constant or J1J2=J3 � constant; �5�

where Xf is the stress ratio at failure according to the Spatially Modi®ed Plane
(SMP) concept [Eqs. (7)±(9)]. In the above equations J1, J2 and J3 are the ®rst, sec-
ond and the third invariants of e�ective stresses. Various strength criteria are plotted
on the deviator plane in Fig. 1. The axes I, II and III indicate the principle direc-
tions. It can be seen from this ®gure that Matsuoka±Nakai strength surface cir-
cumscribes the Mohr±Coulomb pyramid and gives the same angle of internal
friction at triaxial compression and extension. While, Lade±Duncan criterion gives
higher strength under triaxial extension than compression ��0fext > �

0
fcomp�, but much

below than that predicted by the extended Mises criterion.
The Matsuoka±Nakai failure criterion [Eq. (5)] has been evolved from the SMP

concept [4]. The direction cosines of the normal to the SMP are given by Eq. (6).

ai �
������������������
J3=�J2�i�

p
: �6�

The normal (�SMP) and the shear (�SMP) stresses on the SMP can be obtained as in
Eqs. (7) and (8) respectively and the stress ratio (X) is given by Eq. (9).
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�SMP � �1a21 � �2a22 � �3a33 � 3J3=J2; �7�

�SMP �
�������������������������������������������������������
�21a

2
1 � �22a22 � �33a33 ÿ �2SMP

q
�

��������������������������
J1J2J3 ÿ 9J23

q� �
2

; �8�

X � �SMP=�SMP �
������������������������������
J1J2=�9J3� ÿ 1

p
: �9�

Using the extended SMP concept [5], the ordinary strain increment vector (d) can be
resolved as the strain increment components normal (dSMP

*) and parallel (d
SMP
*)

to the SMP as in Eqs. (10) and (11) respectively.

d"�SMP � d"1a1 � d"2a2 � d"3a3; �10�

d
�SMP �
��������������������������������������������������������
d"21 � d"22 � d"33 ÿ d"�SMP

ÿ �2q
: �11�

The above interpretation was given in the principal stress space. Later, Nakai±
Mihara [6] have given a more generalized interpretation for the three-dimensional
stress conditions. They de®ned a tensor called modi®ed stress tensor �tij� that is
given by Eq. (12).

tij � aik�kj; �12�
where aij is a dimensionless symmetric tensor whose principal values �âij� are the
direction cosines of the SMP and are given by Eq. (6). The generalized tensor aij can
be calculated by reverse tensor transformation [7] as follows:

Fig. 1. �-plane sections of various failure surfaces in the ordinary stress space.
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aij � QimQjnâmn; �13�

where Qij is an orthogonal tensor which transforms ordinary stress tensor ��ij� to its
Eigen values ��̂ij�.

�̂ij � QmiQnj�mn: �14�

The normal (tN) and the parallel (tS) components of the modi®ed stresses �tij� to the
SMP and the stress ratio (X) are given by Eqs. (15)±(17) respectively [8].

tN � tijaij � 3J3=J2 � �SMP; �15�

tS �
���������������������������������������������
tij ÿ tNaij
ÿ �

tij ÿ tNaij
ÿ �q

�
��������������������������
J1J2J3 ÿ 9J23

q� �
J2 � �SMP; �16�

X � tS=tN �
������������������������������
J1J2=�9J3� ÿ 1

p
� �SMP=�SMP: �17�

Strain increments are given in a generalized way by the following equations, which
are equivalent to Eqs. (10) and (11) respectively.

d"�SMP � d"ijaij; �18�

d
�SMP �
������������������������������������������������������������������
d"ij ÿ d"�SMPaij
ÿ �

d"ij ÿ d"�SMPaij:
ÿq

�19�

Using the above stress and strain rate variables isotropic and kinematic hardening
clay and sand models have been proposed by Nakai et al. [8,9,10,11] and veri®ed by
various tests on clay and sand. These models could successfully predict various
aspects of soil behavior.
But the models using tij-concept are inconsistent with the critical state concept

that is used in the original and the modi®ed Cam-clay models due to the di�erent
shapes of the yield and the critical state surfaces. In the tij-clay model, the dilatancy
Y is de®ned as

Y � d"�pSMPd
�pSMP; �20�
where superscript p in the strain increment quantities stands for plastic strains.
Since, the strain increment quantities d"�pSMP and d
�pSMP are not only the functions of
ordinary plastic strain increments but also depend on the relative magnitude of
intermediate principal stress [see Eqs. (10), (11), (18) and (19)], the dilatancy is
dependent on the stress condition in general. Eq. (21) is the linear stress±dilatancy
relation proposed in the original tij-clay model [8].

Y � d"�pSMPd
�pSMP � �M� ÿ X�=� �21�

Soil parameter � indicates the slope of stress±dilatancy curve and M* is the stress
ratio (X) at zero dilatancy (Y=0) and can be evaluated from Eq. (22) by substituting
the critical values of stress ratio (X=Xf) and dilatancy (Y=Yf) in Eq. (21).
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M� � Xf � �Yf : �22�

Values of Xf and Yf are calculated considering triaxial compression condition and
using Eqs. (6), (9), (10) and (11). Finally they take the forms as in Eqs. (23) and (24)
respectively. Where R is the major±minor principal stress ratio �R � �1=�3� and the
subscript fcomp denotes the critical state under triaxial compression.

Xf �
���
2
p

3

�������������
Rfcomp

p ÿ 1�������������
Rfcomp

p !
�23�

Yf � 1���
2
p 1ÿ �������������

Rfcomp

pÿ ��������������
Rfcomp

p � 0:5
ÿ �24�

If the triaxial extension condition is considered, above equations become

Xf �
���
2
p

3

����������
Rfext

p
ÿ 1����������

Rfext

p
� �

�25�

Yf �
���
2
p 1ÿ ����������

Rfext

pÿ �����������
Rfext

p � 2
ÿ � �26�

where Rfext is the major±minor principal stress ratio at the critical state under
triaxial extension condition. The tij-concept assumes Matsuoka±Nakai strength cri-
terion, which gives same angles of internal friction under triaxial compression and
extension �

0
fcomp � �

0
fext or Rfcomp � Rfext

� �
. Eqs. (23) and (25) give the same value

of Xf under triaxial compression and extension conditions if Rfcomp � Rfext, but the
magnitudes of dilatancy at critical states [Eqs. (24) and (26)] are di�erent. Thus, to
satisfy the stress±dilatancy relation given by Eq. (21), stress ratio X should take
di�erent values at the critical state depending on the relative magnitude of inter-
mediate principal stress.
The critical state is de®ned in the critical state soil mechanics [12] as a state where

very large shear strain is produced without further change in the plastic volumetric
strain and without the change of e�ective stresses. Eq. (27) or (28) can express the
Cam-clay critical state conditions.

D � d"p
v

d"p
d

� 0; �27�

@g

@�kk
� 0: �28�

For the Cam-clay model, at critical state, stress ratio reaches a constant value
(�=M) independent of the stress condition. Equivalent critical state expressions for
the tij-clay model are as follows
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Y � d"p
SMP�

d
p
SMP�
� Yf ; �29�

@g

@tkk
� 0: �30�

Since, the value of Yf�Yf 6� 0� is dependent on the stress condition, Eq. (29) cannot
express the critical state condition uniquely for the tij-clay model but Eq. (30) still
holds. As mentioned above, stress ratio X should take di�erent values to satisfy Eq.
(30). In brief, unlike the Cam-clay model (q/p=�=const.), the critical state surface
of the tij-clay model is not a constant stress ratio (tS/tN=X 6� const.) surface though
it gives strengths of normally consolidated clay close to the observed ones under
three-dimensional stress conditions. So, the tij-concept implicitly violates the Mat-
suoka±Nakai failure criterion, which is a constant stress ratio (X=const.) surface if
the critical state concept is incorporated in the tij-clay model.
The critical state surface [using Eq. (30)] of the tij-clay model is shown in Fig. 2

along with other failure criteria on the deviator plane. It can be seen from this ®gure

Fig. 2. Lade±Duncan and Matsuoka±Nakai strength surfaces and the critical state surface predicted by

the tij-clay model.
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that the critical state surface predicted by the tij-clay and the Matsuoka±Nakai
strength surface are di�erent. Throughout this paper we will restrict our discus-
sion to the normally consolidated clay. According to the critical state concept,
critical state surface will coincide with the strength surface for normally con-
solidated clay. Fig. 3 shows that at the critical state under triaxial compression
condition, yield surface (X=const.) of the tij-clay model touches the critical state
surface (@g/@tkk=0) at b=(�2ÿ �3)/(�1ÿ �3)=0 but the remaining part of the
yield surface lies inside the critical state surface. In case of the triaxial extension,
yield surface touches the critical state surface at b=1 but the remaining part of
the yield surface lies outside the critical state surface. Thus, it is possible to get
higher strengths than those that can be obtained by monotonic loading for nor-
mally consolidated clay under triaxial compression and true triaxial conditions if
stress condition move along the yield surface from triaxial extension towards
compression condition by neutral loading (Fig. 3). To avoid such situation, it is
required that the shapes of the yield and critical state surfaces should be the same
so that the yield and critical state surfaces coincide at the critical state indepen-
dent of the stress condition.

Fig. 3. �-plane sections of the yield surfaces of the tij-clay model at critical states under triaxial com-

pression and extension and the predicted critical state surface.
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Other interpretations of the non-unique yield and critical state surfaces are shown
in Fig. 4Fig. 5. The exaggerated critical states predicted by the tij-clay model are
shown on the stress±dilatancy curve under triaxial compression and extension con-
ditions (Fig. 4). Under true triaxial conditions, critical states lie in-between. If a non-
linear stress±dilatancy is assumed, then the critical states are di�erent from those
shown in Fig. 4. Thus, the critical state surface of the tij-clay model is also dependent
on the shape of the stress±dilatancy curve, which is also a departure from the con-
ventional models like Cam clay. Fig. 5 shows the normal consolidation line (NCL)
and the critical state lines (CSL) on the e vs. ln(tN) plane, which are usually assumed
to be parallel. For the tij-clay model, two critical state lines (for compression and
extension) de®ne the zone of critical states where the critical state lines of the true
triaxial conditions lie. While in the Cam-clay models the critical state line is a single
line independent of the stress conditions on the e vs. ln p plane.

Fig. 4. Predicted critical states under triaxial compression and extens!ion on the stress-dilatancy curve of

the tij-clay model.
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2. A new modeling approach

2.1. Stress and strain increment quantities

In this section we will introduce new stress quantities, which can consider the
in¯uence of intermediate principal stress to any degree, on the strength and the
dilatancy of soils. In other words, new stress quantities can incorporate any strength
criterion (extended Mises to Mohr±Coulomb) in the elastoplastic modeling of soil
behavior in a consistent way while, retaining all elements of the critical state con-
cept. We will also show that the new stress and strain increment quantities are
properly work conjugate.
Let, the new stress quantities be called modi®ed stress (tij), which is a symmetric

tensor and whose principal directions are coaxial with the principal directions of the
ordinary stress and can be obtained from the ordinary stress (sij) in a similar way as
the tij [6] as follows:

�ij � bik�kj; �31�

Fig. 5. Qualitative normal consolidation line and the critical state lines of the tij-clay model on the com-

pression plane.
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where the tensor bij is a dimensionless symmetric tensor and function of the ordinary
stress sij and its invariants, which plays the main role in this new approach. Explicit
expressions for bij will be shown later. Let, the mean (�m) and the deviator (�s)
components of the modi®ed stress are the measures of normal and shearing stresses,
which are given by the following two equations. The stress ratio (�) is given by Eq.
(34).

�m � �ij�ij=3 �32�

�s �
����������������������������������������������
�ij ÿ �m�ij
ÿ �

�ij ÿ �m�ij
ÿ �q

�33�

� � �s=�m �34�

The generalized strength criterion can then be given by Eq. (35), which forms a circle
on the deviator plane in the modi®ed stress space tij for the feasible expressions of bij
and forms circular or the shapes like Matsuoka±Nakai or Lade±Duncan surfaces on
the deviator plane in the ordinary stress space.

� � �s=�m � const: �35�

Since, the principal directions of the modi®ed stress (tij) and the principal directions
of the plastic strain increments are coaxial with the principal directions of the
ordinary stress (sij), strain increment quantities conjugate to the stress quantities �m
and �s can be given by the ordinary volumetric (dv) and the deviator (ds) strain
increments [Eqs. (36) and (37)] respectively. These strain increment quantities are
free from stress ratio terms; hence, the dilatancy at the critical state will be unique.
Thus, the �-plane sections of the yield, plastic potential and the critical state surfaces
will coincide at the critical state independent of the stress conditions.

d"v � d"ij�ij=3; �36�

d"s �
����������������������������������������������������������������
d"ij ÿ d"v�ij=3
ÿ �

d"ij ÿ d"v�ij=3
ÿ �q

: �37�

The above equations are summarized and compared with those of the Cam clay and
the tij-clay models in Table 1. We will formulate a simple elastoplastic model using
these stress and strain increment quantities in a later section.

2.2. Determination of bij

There are debates over what should be the failure surface for soils. But one thing
is well established that the strengths of soils under triaxial extension and true triaxial
conditions should be much below than those predicted by the extended Mises cri-
terion. Without any further controversy we will show that any failure surface can be
incorporated in the modeling by using the proposed concept.
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The tensor bij plays the most vital role in the proposed concept because it controls
not only the shape of the failure surface but also the yield and the plastic potential
surfaces. If the principal values of the tensor bij are denoted by b̂ij, then bij can be
obtained by the reverse transformation as follows:

bij � QimQjnbmn: �38�

To de®ne the principal values of bij following guidelines must be considered.

(a) (a) If the principal e�ective stresses are such that �̂115�̂225�̂33 then the
principal values of bij should satisfy b̂114b̂224b̂33.

(b) (b) Failure surface should be smooth, convex and the �-plane sections in the
ordinary stress space should coincide or lie in between extended Mises and a
surface circumscribing Mohr±Coulomb surface (Matsuoka±Nakai criterion
for example).

(c) (c) The stress±dilatancy relation or the stress±strain curve should match the
observed response.

There may be many functions that can be assumed for the principal values of bij
satisfying the ®rst condition. For example

b̂ij � K J1=�̂ij
ÿ �m �if i � j�;

0 �if i 6� j�;
�

�39�

b̂ij � K 1ÿ �̂ij=J1
ÿ �m �if i � j�;

0 �if i 6� 0�:
�

�40�

In the above equations J1 is the ®rst invariant of e�ective stresses (sij), �̂ij are the
principal values of the ordinary stress and K is a proportionality constant that can
be evaluated from Eq. (41). That is, we are restricting the magnitude of bij to one,
which is not a necessity.

Table 1

Comparison between various stress and strain increment variables

Cam Clay tij-Clay Proposed

sij tij � aik�kj �ij � bik�kj
dij (identity tensor) aij bij
p � �ij�ij=3 tN � tijaij �m � �ij�ij=3
Sij � �ij ÿ p�ij t

0
ij � tij ÿ tNaij �

0
ij � �ij ÿ �m�ij

q � ��������������������3=2�sijsij
p

tS �
��������
t
0
ijt
0
ij

q
�s �

���������
�
0
ij�
0
ij

q
�ij � sij=p xij � t

0
ij=tN �ij � �0ij=�m

� � q=p � ���������������������3=2��ij�ij
p

X � tS=tN � ����������
xijxij
p

� � �s=�m � ����������
�ij�ij
p

d"v � d"ij�ij d"�SMP � d"ijaij d"v � d"ij�ij
d"
0
ij � d"ij ÿ �ijd"v=3 deif � d"ij ÿ d"�SMPaij d"

0
ij � d"ij ÿ �ij d"v=3

d"d �
������������������������
2=3 d"

0
ij d"

0
ij

q
d
�SMP �

����������������
deij deij

p
d"s �

����������������
d"
0
ij d"

0
ij

q
d"p

ij � � @g=@�ij
ÿ �

d"p
ij � � �@g=@tij� d"p

ij � � �@g=@tij�
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jbj �
���������
bijbij

p
� 1: �41�

Changing the value of the exponent m of the above two equations and using Eq.
(35), a wide variety of failure surfaces can be generated. Fig. 6(a) and (b) show the
failure surfaces on the deviator plane of the ordinary stress space generated by Eq.
(35) and using Eqs. (39) and (40) respectively. For both Eqs. (39) and (40), failure
surfaces coincide with the extended Mises criterion for m=0 and approache to cir-
cumscribe the Mohr±Coulomb pyramid as m increases. The strength surface using
Eq. (39) approaches to circumscribe Mohr±Coulomb surface for m value close to
one. If m becomes exactly equal to one, strength surface becomes a point, which is
meaningless. Also, it is numerically veri®ed using Eq. (39) that the stress-strain
curves are too ¯exible, which do not resemble the experimental observations. So,
from now on, we shall consider Eq. (40) as one of the appropriate expressions for
the principal values of bij, which can also be written as follows:

b̂ij �
�1ÿ�̂ij=J1�m��������������������������������������������������������������

�1ÿ�̂11=J1�2m��1ÿ�̂22=J1�2m��1ÿ�̂33=J1�2m
p �if i � j�
0 �if i 6� 0�

(
�42�

Failure surfaces using Eq. (35) in conjunction with Eq. (42) coincides with the
extended Mises surface for m=0 and generates surfaces very close to the Lade±
Duncan and the Matsuoka±Nakai strength surfaces for m=0.51 and m=0.66
respectively [Fig. 7(a)]. A failure surface close to the critical state surface predicted
by the tij-clay model can be generated for m=0.555 [Fig. 7(b)]. For m value higher
than 0.66, the strength surface moves inside the Mohr±Coulomb surface at triaxial
extension [Fig. 6(b)]. It implies that the angle of internal friction under triaxial
extension is lower than that of triaxial compression condition, which is not sup-
ported by the experimental evidence. Also, convexity of the strength surface in the
ordinary stress space is not guaranteed. But modeling is still possible for
m>0.66, since it forms a circular shape in the modi®ed stress space. Fig. 8 also
shows that various strength criteria can be closely generated by the proposed
concept by varying m.
In the tij-concept the tensor aij is related to the direction cosines of the SMP. Thus,

its expression cannot be changed. On the other hand, bij is not related to any phy-
sical plane like the SMP and is an arbitrary function of the ordinary stress and its
invariants. But its properties are similar to aij. Both aij and bij are the isotropic ten-
sors at isotropic stress conditions. If the stress condition is anisotropic and if the
principal stresses are in the order �̂115�̂225�̂33, then the principal values of both aij
and bij should be in the reverse order �â114â224â33 and b̂114b̂224b̂33�. If the
principal values of bij are in the same order �b̂115b̂225b̂33� as the ordinary stress
�̂115�̂225�̂33, then the predicted strengths will be higher than those predicted by the
extended Mises criterion under triaxial extension and true triaxial conditions.
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Fig. 6. (a) Failure surfaces using Eq. (39). (b) Failure surfaces using Eq. (40).
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2.3. Work conjugate stress and strain increment components

Now, we will show that the proposed stress and strain increment quantities are
properly work conjugate and in the process, we will recapitulate the Cam clay and
tij-clay work equations. When a cubical soil element supporting e�ective stresses sij

is subjected to arbitrary plastic strain increments d"p
ij, then the external plastic work

done per unit volume is

Fig. 7. (a) Generation of strength surfaces close to the Matsuoka±Nakai and the Lade±Duncan surfaces

using Eq. (42). (b) Generation of strength surfaces close to the extended Mises and the critical state sur-

face of the tij-clay model using Eq. (42).
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dWext � �ij d"p
ij: �43�

If the stresses are principal stresses and if we assume the principal directions of the
plastic strain increments coincide with the principal directions of the stresses, then
the above work equation becomes

dWext � �1 d"p
1 � �2 d"p

2 � �3 d"p
3 : �44�

The Cam clay plastic work equation can be given by

dWext � �1 d"p
1 � �2 d"p

2 � �3 d"p
3 � p d"p

v � q d"p
d �45�

The above equation is not valid for any arbitrary plastic strain increments but valid
only if the following equation holds.

�2 ÿ �3
�1 ÿ �3 �

d"p
2 ÿ d"p

3

d"p
1 ÿ d"p

3

: �46�

In other words, the Cam-clay work equation holds if the direction of the strain
increment vector coincides with the direction of stress vector on the �-plane. This
can be better understood from Fig. 9(a) that shows the �-plane section of the plastic
potential in the ordinary stress space, which is a circle. Also, it can be seen that the
direction of the current stress vector (radial direction) and the normal to the plastic
potential are identical. If the ¯ow rule is given such that the plastic strain increment

Fig. 8. Generation of various strength criteria using Eq. (42).
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vector is directed to the outward normal to the plastic potential in the same
stress space, it will automatically satisfy Eqs. (45) and (46). Hence, the Cam-clay
stress components (p and q) and plastic strain increments (dv

p and dd
p) are work

conjugate.
Since, the principal directions of the proposed stress (tij) are coaxial with the

principal directions of the ordinary stress (sij) and the principal directions of the
plastic strain increment (dij

p), the plastic work equation using proposed stress and
strain increment quantities becomes

dW��ext � �1 d"p
1 � �2 d"p

2 � �3 d"p
3 � �m d"p

v � �s d"p
s : �47�

Likewise the Cam-clay model, Eq. (47) is valid if

�2 ÿ �3
�1 ÿ �3 �

d"p
2 ÿ d"p

3

d"p
1 ÿ d"p

3

�48�

Fig. 9. (a) Cam-clay plastic potential, stress and strain increment vectors on the deviator plane in the

ordinary stress space. (b) Plastic potential, modi®ed stress and strain increment vectors on the deviator

plane in the modi®ed stress space.
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Fig. 9(b) shows the �-plane section of the plastic potential in the modi®ed stress
space, which is a circle. So, the normal to the plastic potential and the direction of
current modi®ed stress vector on the �-plane will be the same. Using the analogy of
the Cam-clay model, the stress and the strain increment quantities will become work
[not the ordinary work but the one given by [Eq. (47)] conjugate if the plastic strain
increment vector is outward normal to the plastic potential in the modi®ed stress
space. Since, the plastic potential for an elastoplastic model we shall formulate in the
next section will be given using modi®ed stress and the ¯ow rule will also be given in
the modi®ed stress space, the stress and strain increment quantities will become
work conjugate. An analytical veri®cation of Eq. (47) can be made in the same way
as the Cam-clay model.
On the other hand, in the tij-concept, principal directions of tij are coaxial with

the principal directions of the ordinary stress (sij) and the principal directions of
the plastic strain increment �d�p

ij� and the corresponding work equation is given
by [6]:

dW�ext � t1 d"p
1 � t2 d"p

2 � t3 d"
p
3 � tNd"�pSMP � tS d
�pSMP: �49�

From the middle part of the above equation, it can be seen that the modi®ed stress
and the ordinary strain increments give the plastic work according to the tij-concept.
In the right-hand side of the above equation, the stress quantities tN and tS are
respectively the components of modi®ed stress (tij) along aij and perpendicular to it.
The conjugate strain increments d"�pSMP and d
�pSMP respectively are obtained by
resolving the ordinary plastic strain increments along aij and perpendicular to it.
Flow rule of the tij-clay model also links the ordinary plastic strain increments to the
modi®ed stress (Table 1).
It is to note that objectivity of the stress and the strain increment parameters has

also been veri®ed numerically. The plastic work given by the Eqs. (47) and (49) are
not the ordinary work as Eq. (44) but the plastic work according to the respective
concepts. Thus, we can conclude that the proposed stress and strain increment
quantities are properly work conjugate for the proposed expressions of b̂ij and
probably for many other expressions.

3. Model formulation

Since the proposition of the Cam clay, numerous models have been proposed to
simulate various aspects of soil behavior. Namely, dependency of the direction of
plastic ¯ow on the direction of loading, inherent anisotropy induced during the
formation of the ground and the stress-induced anisotropy due to shear and stabili-
zation of strains during cyclic loading. However, we shall formulate a simple model
for clay within the conventional framework of the critical state soil mechanics and
call it as the MS-Clay model. Here, MS stands for the modi®ed stress.
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First we assume the following decomposition of the total strain increments:

d"ij � d"e
ij � d"p

ij: �50�
The elastic strain increment follows the generalized Hooke's law.

d"e
ij �

1� ve

Ee
d�ij ÿ ve

Ee
d�kk�ij: �51�

The plastic strain increment is given by the ¯ow rule in the modi®ed stress space
(since, the proposed modi®ed stresses and the plastic strain increments are conjugate
in the modi®ed stress space) as given below.

d"p
ij �

@g

@�ij
: �52�

The proportionality constant � can be evaluated from the consistency condition
given using either ordinary or the modi®ed stress as follows:

�
lÿ�
1�e0

@f
@�ij

d�ij
@g
@�kk

�
lÿ�
1�e0

@f
@�ij

d�ij
@g
@�kk

: �53�

Soil parameters � and � in the above equations are the slopes of the normal con-
solidation and unloading±reloading lines of a e vs.ln �m (or e vs.ln p) plot and eo is
the reference void ratio.
Without giving an expression for the internal energy dissipation and without

equating it with the external work done [Eq. (47)], we intuitively write the stress±
dilatancy relation using the proposed stress and strain increment quantities as

D � d"p
v

d"p
s
� �

�
f ÿ ��
���ÿ1

; �54�

where �f is the stress ratio at the critical state. The above stress±dilatancy relation
introduces two new parameters (� and �) to retain completeness and generality. It
has similarity with the stress±dilatancy relations of the original (�=�=1) and the
modi®ed (�=�=2) Cam-clay models and the tij-clay model (�=1) though the stress
and strain increment variables are di�erent. The original Cam clay gives relatively
¯exible, and the modi®ed Cam clay gives sti�er initial response in general and there
is no control over it. However, using the proposed stress±dilatancy relation and
adjusting the parameters � and �, desired initial response can be obtained. These
parameters also control the continuity and smoothness of the plastic potential. A
continuous and smooth plastic potential ensures gradual drop in sti�ness when
shearing starts from isotropic stress condition.
Some parametric analyses of Eq. (54) are shown in Fig. 10. Fig. 10(a) shows

stress±dilatancy curves keeping �=constant and varying � and Fig. 10(b) shows
those keeping �=constant and varying �. It can be seen from these ®gures that

148 E.Q. Chowdhury, T. Nakai / Computers and Geotechnics 23 (1998) 131±164



Fig. 10. (a) Variation of stress±dilatancy with parameter �. (b) Variation of stress±dilatancy with

parameter �.
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when � increases, stress±dilatancy curve moves toward the dilative zone and as a
consequence stress-strain response becomes ¯exible if the yield function remains the
same or if the associated ¯ow is assumed. On the contrary, when � increases, stress±
dilatancy become more contractive and stress-strain response becomes sti�er.
In the constitutive modeling of geomaterials non-associated ¯ow rule is frequently

used to suppress excessive volumetric strains in the analyses of over-consolidated or
cyclically loaded soils. Since, the model is primarily intended to simulate normally
consolidated clay behavior, it is reasonable to assume associated ¯ow rule. Also,
associated ¯ow rule is simple and satis®es Drucker's stability postulate. Considering
the normality condition (associated ¯ow rule) and integrating Eq. (54) yield and
plastic potential functions can be obtained as Eqs. (55) and (56).

g � f � lÿ �
1� e0

ln
�m

�m0
� 1

�

�

�f

� ��" #
ÿ "p

v � 0 for � � 1; �55�

g � f � lÿ �
1� e0

ln
�m
�m0
� �

���ÿ 1� ln 1� ��ÿ 1� �
�f

� ��( )" #
ÿ "p

v � 0 for � 6� 1:

�56�

Functions similar to the Eqs. (55) and (56) have been used in the original tij-clay
model [8] with �=1 and in an extended tij-clay model [13,14], a function similar to
Eq. (55) has been used, which implicitly assumes a=1.
Shapes of the plastic potentials corresponding to the stress±dilatancy relations of

Fig. 10 are shown in Fig. 11. For the linear stress±dilatancy relations (�=1), the tip
of the plastic potential is singular irrespective of � [Fig. 11(b)] like the original Cam
clay and the tij-clay models. Also, if �<1 then the second logarithm term of Eq.
(56) becomes indeterminate if �5�f=�1ÿ ��1=�, which is a very high stress ratio. In
the analyses of normally or lightly over-consolidated soils, peak stress ratios are
much below than the above limiting value. But for the heavily over-consolidated
soils, peak stress ratios (�) can be higher than �f=�1ÿ ��1=�. If �51 then such
indeterminate situation disappears but singularity at the tip of the plastic potential
remains.
Singularity at the tip of the plastic potential disappears if �>1. Fig. 11(a) shows

plastic potentials for �=1.0 and varying values of �. As seen in this ®gure, tip of the
plastic potential becomes more rounded as � increases and consequently stress-
strain response becomes sti�er. From the foregoing discussion, we can conclude
that for a smooth plastic potential using Eq. (54) the following inequality must be
satis®ed.

�51; � > 1: �57�
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4. Experimental observations and numerical simulations

4.1. Testing method

Saturated, remolded and normally consolidated Fujinomori clay was used in the
triaxial and true triaxial experiments. Physical properties of the Fujinomori clay are

Fig. 11. (a) Variation of the shapes of plastic potentials with �. (b) Variation of the shapes of plastic

potentials with �.

E.Q. Chowdhury, T. Nakai / Computers and Geotechnics 23 (1998) 131±164 151



liquid limit wL=41%, plastic limit wp=23% and the speci®c gravity Gs=2.67. At
®rst, the clay powder was mixed with de-aired water and one-dimensionally con-
solidated under a pressure of 49 kpa. Water content after one-dimensional con-
solidation was about 34%. Cylindrical samples of diameter 5.0 cm and 10.0 cm high
were used in the triaxial tests. After placing the samples in the triaxial apparatus
these were isotropically consolidated under e�ective con®ning pressures of 196 kpa
with back pressures of 98 kpa. No signi®cant anisotropy due to initial one-dimen-
sional consolidation was observed after isotropic consolidation. Then, the samples
were sheared at constant mean stress under drained condition at an axial strain rate
of about 1% per day.
Nakai et al. [15] performed drained true triaxial tests with ®xed and hinged

connections between the vertical loading plate and the loading ram. The data
presented here are those of the hinged connection. In these tests cubical (10.5
cm� 10.3 cm� 7.0 cm) samples were used, which were isotropically consolidated
under e�ective mean stresses of 196 kpa. For the detailed testing procedure refer
to the paper mentioned above. Like the triaxial tests, true triaxial samples were
also sheared at constant mean stress. Axial strain rate in these tests was about
0.8% per day.
Stress paths of the triaxial and true triaxial tests are shown in Fig. 12. Here, �

indicates the angle between �a-axis and the corresponding radial stress path on the
deviator plane. The angle �=0� and �=180� denote the stress paths of triaxial
compression and extension respectively. Other stress paths (y=15�, �=30� and
�=45�) denote three di�erent principal stresses.

Fig. 12. Stress paths of the triaxial and the true triaxial tests on the octahedral plane.
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Since, the proposed model cannot consider the e�ect of loading direction on the
direction of plastic ¯ow, triaxial test results of increasing or decreasing mean
stress and the rotation of principal axes (torsional shear test) are not presented
here.

4.2. Soil parameters

A total of seven parameters are required for the proposed model while, the Cam
clay needs only four and the tij-Clay model requires ®ve parameters. However, the
increased number of parameters may not be a drawback of the proposed model
because no further experiments are necessary to determine the parameters �, � and
m. Also, these parameters give ¯exibility to ®t the observed stress-strain response
and the strength of soils. Experimental determination of the parameter m would be
very costly and time consuming because it needs many true triaxial test data. So, it
should be assumed to ®t the desired failure surface in the modeling.
Since, the tij-clay model predicts closely the observed shear behavior of clay [15],

performance of the proposed model has been checked against the tij-clay model by
using the critical state surface of the tij-clay model as the failure surface for the
proposed model (m=0.555).
Values of the soil parameters of the Fujinomori clay for various models are listed

in Table 2.The ®rst two soil parameters Ct and Ce can be determined from the slopes
of the normal-consolidation and unloading±reloading lines of an isotropic con-
solidation test using reference void ratio e0. The strength parameter '

0
comp can be

determined from a triaxial compression test. Poisson's ratio ve is assumed to be zero.
The parameter � of the tij-Clay model has been determined not from the slope of the
observed stress±dilatancy but so chosen that it produces the same con®ning pressure
as the original Cam-clay model at the critical state in the analysis of an undrained
triaxial compression test. Parameters � and � of the proposed model have been
determined by a semi trial±error method. Various values of � have been assumed
and � values are calculated using Eqs. (55) and (56) for a given plastic volumetric
strain. Amount of plastic volumetric strain can be estimated from the triaxial test

Table 2

Soil parameters of Fujinomori clay for various models

Parameter Cam-Clay tij-Clay MS-clay

Ct � l=�1� e0� 4.44� 10ÿ2 4.44� 10ÿ2 4.44� 10ÿ2

Ce � k=�1� e0� 0.47� 10ÿ2 0.47� 10ÿ2 0.47� 10ÿ2

�
0
comp 33.7� 33.7� 33.7�

ve 0.0 0.0 0.0

� ± 0.7 1.0

� ± ± 1.24

m ± ± 0.555
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that has been performed to determine the strength parameter. To be more precise,
elastic volumetric strain for the triaxial test can be estimated using Hooke's law and
can be deducted from the total volumetric strain to calculate the plastic volumetric
strain. Using these combinations of � and �, analyses for the triaxial compression
test have been made, then the combination that best ®ts the observed response is
chosen as the parameters.

4.3. Performance of the model

First of all, we veri®ed that there is no e�ect of stress level in the proposed model
by analyzing triaxial compression tests at di�erent con®ning pressures, which is the
same as the Cam clay and the tij-clay models.
Figs. 13±18 show the observed and the predicted responses in the triaxial and true

triaxial tests. In these ®gures principal strains are plotted against the stress ratio (q/
p), and the volumetric strain ("v) is plotted against the major principal strain. Also,
solid curves in these ®gures are the predicted responses by the proposed model and
broken curves are those by the tij-clay model. Simulations by the original Cam-clay
model were shown by Nakai et al. [15], which do not ®t the observed responses in
general and are excluded from the ®gures for neatness. Figs. 13 and 14 correspond
to the triaxial compression and extension tests respectively and Figs. 15±18 are those
of the true triaxial tests.

Fig. 13. Observed in the triaxial compression test and the predicted responses by the tij-clay and the

proposed models.
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Fig. 14. Observed in the triaxial extension test and the predicted responses by the tij-clay and the pro-

posed models.

Fig. 15. Observed in the true triaxial test (�=0�) and the predicted responses by the tij-clay and the pro-

posed models.
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Fig. 16. Observed in the true triaxial test (�=15�) and the predicted responses by the tij-clay and the

proposed models.

Fig. 17. Observed in the true triaxial test (�=30�) and the predicted responses by the tij-clay and the

proposed models.
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From all these ®gures, it is clear that the proposed model closely predicts the
observed stress-strain behavior. Also, responses at low stress ratio are smooth due to
the use of the proposed plastic potential, whose tip is rounded for �>1 and conse-
quently sti�ness changes gradually. On the other hand, the tij-clay model slightly over
predicts volumetric strain and the initial responses are ¯exible. The strengths pre-
dicted by both the models are almost the same and slightly higher than those observed
under true triaxial and triaxial extension conditions because we used the critical state
surface of the tij-clay model as the failure surface of the proposed model.
The observed stress±dilatancy relations using the proposed stress and strain

increment quantities are shown in Fig. 19, which are aligned in a narrow band with
scatters at low stress ratios. This scatter may be due to the presence of elastic strains
in the observed responses, whose proportions are comparable to the plastic strains
at low stress ratios. Solid line in this ®gure is the stress±dilatancy relation used in the
proposed model, which closely resemble the observed trend.
Fig. 20(a) shows the directions of the observed strain increment vectors in the true

triaxial tests under three di�erent principal stresses (�=15�, 30� and 45�) on the
deviator plane. The length of each vector is given by the ratio of the shear strain
increment (�"d) to the stress ratio increment ���q=p��. It is clear from this ®gure that
the directions of the observed strain increment vectors deviate from the direction of
shear stress (radial direction) with a de®nite trend as the stress ratio increases. Fig.
20(b) shows the directions of the predicted strain increment vectors by the proposed

Fig. 18. Observed in the true triaxial test (�=45�) and the predicted responses by the tij-clay and the

proposed models.
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model, which are in good agreement with the observed trend. Nakai et al. [15] have
also showed the predicted responses by the tij-clay and the Cam-clay models. It has
been observed that the tij-clay also expresses the observed trend. On the other hand,
calculated strain increment vectors by the Cam clay are always directed in the radial
direction, which is far apart from the observed trend.
Fig. 21 shows the observed stress conditions at peak stress ratio on the deviator

plane. In this ®gure solid squares correspond to the test data of the true triaxial
apparatus (rectangular parallelepiped specimen) and the solid circles are those of the
triaxial apparatus (cylindrical specimen). The observed stress condition at failure
using the true triaxial apparatus at �=0� slightly deviates from �2=�3 line, since the
two horizontal stresses could not equalized perfectly. Even though the di�erent sets
of the triaxial test data from those of Nakai are presented in this paper, but in these
tests too, observed strengths are slightly higher than those observed using true
triaxial apparatus, which are consistent with the triaxial test data presented by
Nakai. Shibata and Karube [16] and Lade and Musante [17] reported a similar
trend. In this ®gure Mohr±Coulomb, Matsuoka±Nakai strength criteria and the

Fig. 19. Observed stress±dilatancy in various tests and calculated one for the proposed model.
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Fig. 20. (a) Directions of the observed strain increments on the octahedral plane. (b) Directions of the

calculated strain increments on the octahedral plane.
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strength criteria used in the proposed model are plotted. The strength criterion used
in the proposed model slightly over predicts strengths under true triaxial and triaxial
extension conditions, which can also be seen in the stress-strain curves.

5. Conclusions

This paper introduces a modeling approach using modi®ed stress to consider the
in¯uence of intermediate principal stress, which can adopt wide variety of strength
criteria and is consistent with the critical state concept. It has similarity with the tij-
concept, which also uses modi®ed stress but the underlying principles are quite dif-
ferent. In the tij-concept stress parameters are the components of the modi®ed stress
(tij) normal and parallel to the SMP and the conjugate strain increment components
are the components of the ordinary strain increments along the directions corre-
sponding to the stress parameters. On the other hand, in the proposed concept,
mean and deviator components of the modi®ed stress are considered as the stress
parameters and the conjugate strain increments are the volumetric and the deviator
strains respectively. Use of these parameters ensures the critical state to be reached

Fig. 21. Observed and predicted strengths in the triaxial and the true triaxial tests.
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when stress ratio (�) reaches a constant value (�=�f) independent of the relative
magnitude of the intermediate principal stress.
An expression for the tensor bij, which transforms the ordinary stresses, controls

the shape of the failure surface and in¯uences the stress±dilatancy relation has been
suggested, but other expressions may also give good results.
A compact stress±dilatancy relation is also introduced, which gives a continuous

and smooth plastic potential. Two new parameters pertaining to the proposed
stress±dilatancy relation control the shape and in¯uence the model response and can
be adjusted to ®t the observed response.
In order to check the validity of the proposed model triaxial and true triaxial tests

have been analyzed. Predictions by the proposed model show good agreements with
the observed responses. As a demonstration of the proposed concept, the critical
state surface of the tij-clay model is considered as the failure surface, but other
strength surfaces can also be implemented in a similar way. Though the proposed
model is for the normally consolidated clay it can also be extended to simulate the
over-consolidated and the cyclically loaded clay behavior.

Appendix

The main hurdle in using the proposed model would be the determination of the
partial derivatives under general 3-D stress conditions, which can be determined
directly or by transformation as follows:

@g

@�ij
� @g

@�̂kl

@�̂kl
@�ij
� QikQjl

@g

@�̂kl
; �A1�

@f

@�ij
� @f

@�̂kl

@�̂kl
@�ij
� QikQjl

@f

@�̂kl
; �A2�

Where @g=@�̂kl and @f=@�̂kl are the derivatives in a di�erent coordinate system, pre-
ferably in the principal stress space. Partial derivatives can also be calculated directly
using chain rule as in Eq. (A.3)Eq. (A.5).

@g

@�ij
� @g

@�m

@�m
@�ij
� @g
@�

@�

@�kl

@�kl
@�ij

: �A3�

Eq. (55) or (56) gives the plastic potential, its derivatives are:

@g

@�m
� 1

�m
;
@�m
@�ij
� �ij

3
�ij � 1 if i � j; �ij � 0 if i 6� j;
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:

Substituting above ®ndings in Eq. (A.3) gives Eq. (A.4), which is the required partial
derivative of the plastic potential.
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Now, @f
@�ij

can be derived as follows:
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@f@�kl of the above equation can be derived similarly as @g=@�ij and is given below.
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The principal values of bij are given by Eq. (42), then the fourth order tensor
@b̂ij=@�̂klcan be obtained as follows:

@b̂ij
@�̂kl
� b̂ij

1

k

@K

@�̂kl
ÿ m

J1

� �
if i � j � k � l;
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@b̂ij
@�̂kl
� b̂ij

1

k

@K

@�̂kl
ÿ m�̂ij
J21�1ÿ �̂ij=J1�

� �
if i � j; k � l; i 6� k:

It is important to note that in the principal space b̂ij � 0 if i 6� j but the rate of
changes @b̂ij=@�̂kl 6�0 if i=k and j=l or i=l and j=k, which are given below.
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� b̂ik ÿ b̂jl
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Here,

K � 1��������������������������������������������������������������������������������������������������
�1ÿ �̂11=J1�2m � �1ÿ �̂22=J1�2m � �1ÿ �̂33=J1�2m

q
and if i=j then

@K

@�̂ij
� Km

J1
ÿ K3m

J1

��1ÿ �li��1ÿ �̂11=J1�2mÿ1 � �1ÿ �2i��1
ÿ �̂22=J1�2mÿ1 � �1ÿ �3i��1ÿ �̂33=J1�2mÿ1

�
else

@K=@�̂ij � 0:

Substituting the above derivatives in Eq. (A.8) and using Eqs. (A.5)±(A.8), @f=@�ij
can be determined.
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